TY - CHAP
T1 - Reducing the Effect of Variable Starch Levels in Biomass Recalcitrance Screening
AU - Decker, Stephen R.
AU - Carlile, Melissa
AU - Selig, Michael J.
AU - Doeppke, Crissa
AU - Davis, Mark
AU - Sykes, Robert
AU - Turner, Geoffrey
AU - Ziebell, Angela
PY - 2012
Y1 - 2012
N2 - Cell wall recalcitrance is the largest contributor to the high expense of lignocellulose conversion to biofuels (Himmel ME et al., Science 315:804-807, 2007). In response to this problem, researchers at the BioEnergy Science Center (BESC) are working to determine the contributing factors of biomass recalcitrance. The primary approach to this is screening large sample sets of genetic and environmental variants of model and feedstock plant species for differences in recalcitrance to combined hydrothermal pretreatment and enzymatic hydrolysis (Decker S et al., BioEnergy Res 2:179-192, 2009). To handle these large sample sets (up to several thousand samples per set), the BESC has developed high throughput screening systems to evaluate both cell wall composition and recalcitrance (Selig MJ et al., Biotechnol Lett 33:961-967, 2011; Selig MJ et al., Ind Biotechnol 6, 104-111, 2010). Molecular beam mass spectroscopy and high throughput, 2-stage acid hydrolysis are used to determine amounts and ratios of cell wall components such as lignin, cellulose, and xylan. Recalcitrance is measured by glucose and xylose release after high throughput hydrothermal pretreatment and enzymatic saccharification, screening large numbers (up to 1,000 s per week) of biomass samples (Selig MJ et al., Ind Biotechnol 6, 104-111, 2010; Sykes R et al., Methods Mol Biol 581, 169-183, 2009). Implementation of these high throughput techniques revealed additional concerns when screening biomass samples for recalcitrance, principal among these was the contribution of starch to glucose release quantitation in both compositional analysis and recalcitrance screening.
AB - Cell wall recalcitrance is the largest contributor to the high expense of lignocellulose conversion to biofuels (Himmel ME et al., Science 315:804-807, 2007). In response to this problem, researchers at the BioEnergy Science Center (BESC) are working to determine the contributing factors of biomass recalcitrance. The primary approach to this is screening large sample sets of genetic and environmental variants of model and feedstock plant species for differences in recalcitrance to combined hydrothermal pretreatment and enzymatic hydrolysis (Decker S et al., BioEnergy Res 2:179-192, 2009). To handle these large sample sets (up to several thousand samples per set), the BESC has developed high throughput screening systems to evaluate both cell wall composition and recalcitrance (Selig MJ et al., Biotechnol Lett 33:961-967, 2011; Selig MJ et al., Ind Biotechnol 6, 104-111, 2010). Molecular beam mass spectroscopy and high throughput, 2-stage acid hydrolysis are used to determine amounts and ratios of cell wall components such as lignin, cellulose, and xylan. Recalcitrance is measured by glucose and xylose release after high throughput hydrothermal pretreatment and enzymatic saccharification, screening large numbers (up to 1,000 s per week) of biomass samples (Selig MJ et al., Ind Biotechnol 6, 104-111, 2010; Sykes R et al., Methods Mol Biol 581, 169-183, 2009). Implementation of these high throughput techniques revealed additional concerns when screening biomass samples for recalcitrance, principal among these was the contribution of starch to glucose release quantitation in both compositional analysis and recalcitrance screening.
KW - Biomass recalcitrance
KW - Composition analysis
KW - High throughput screening
KW - Plant cell walls
KW - Starch
UR - http://www.scopus.com/inward/record.url?scp=84864841877&partnerID=8YFLogxK
U2 - 10.1007/978-1-61779-956-3_17
DO - 10.1007/978-1-61779-956-3_17
M3 - Chapter
C2 - 22843400
AN - SCOPUS:84864841877
SN - 9781617799556
T3 - Methods in Molecular Biology
SP - 181
EP - 195
BT - Biomass Conversion
A2 - Himmel, Michael
ER -