TY - JOUR
T1 - Renewable Energy Potential on Marginal Lands in the United States
AU - Milbrandt, Anelia R.
AU - Heimiller, Donna M.
AU - Perry, Andrew D.
AU - Field, Christopher B.
PY - 2014
Y1 - 2014
N2 - This study identifies several marginal land categories suitable for renewable energy development, representing about 11% of U.S. mainland. The authors define marginal lands as areas with inherent disadvantages or lands that have been marginalized by natural and/or artificial forces. These lands are generally underused, difficult to cultivate, have low economic value, and varied developmental potential. The study finds that a significant potential exists for renewable energy development on these lands. Technologies assessed include utility-scale photovoltaics (PV), concentrating solar power (CSP), wind, hydrothermal geothermal, mini-hydro systems (low head/low power), biomass power, and landfill gas-to-energy. Solar technologies present the highest opportunity, followed by wind and biomass power. It is estimated that about 4.5 PWh of electricity could be produced from PV on marginal lands in the conterminous United States, 4 PWh from CSP, 2.7 PWh from wind, 1.9 PWh from biomass, 11 TWh from mini-hydropower systems, 8.8 TWh from hydrothermal geothermal, and 7.3 TWh from landfill gas. While it is possible for some technologies to be co-located, it is more likely that only one will be deployed in a given area. Thus, it is most reasonable to view the potential for different technologies separately.
AB - This study identifies several marginal land categories suitable for renewable energy development, representing about 11% of U.S. mainland. The authors define marginal lands as areas with inherent disadvantages or lands that have been marginalized by natural and/or artificial forces. These lands are generally underused, difficult to cultivate, have low economic value, and varied developmental potential. The study finds that a significant potential exists for renewable energy development on these lands. Technologies assessed include utility-scale photovoltaics (PV), concentrating solar power (CSP), wind, hydrothermal geothermal, mini-hydro systems (low head/low power), biomass power, and landfill gas-to-energy. Solar technologies present the highest opportunity, followed by wind and biomass power. It is estimated that about 4.5 PWh of electricity could be produced from PV on marginal lands in the conterminous United States, 4 PWh from CSP, 2.7 PWh from wind, 1.9 PWh from biomass, 11 TWh from mini-hydropower systems, 8.8 TWh from hydrothermal geothermal, and 7.3 TWh from landfill gas. While it is possible for some technologies to be co-located, it is more likely that only one will be deployed in a given area. Thus, it is most reasonable to view the potential for different technologies separately.
KW - Marginal lands
KW - Renewable energy
KW - Renewable resources
UR - http://www.scopus.com/inward/record.url?scp=84884649577&partnerID=8YFLogxK
U2 - 10.1016/j.rser.2013.08.079
DO - 10.1016/j.rser.2013.08.079
M3 - Article
AN - SCOPUS:84884649577
SN - 1364-0321
VL - 29
SP - 473
EP - 481
JO - Renewable and Sustainable Energy Reviews
JF - Renewable and Sustainable Energy Reviews
ER -