TY - GEN
T1 - Renewable Thermal Energy Systems Designed for Industrial Process Solutions in Multiple Industries
AU - Akar, Sertac
AU - Kurup, Parthiv
AU - Belding, Scott
AU - McTigue, Josh
AU - Cox, Jordan
AU - McMillan, Colin
AU - Boyd, Matt
AU - Lowder, Travis
PY - 2021
Y1 - 2021
N2 - Industrial decarbonization is a key area that must be accelerated, to foster the removal of fossil fuels from the provision of heat, especially at low temperatures less than 300 degrees C. This paper looks at the results of two case studies for understanding the economics and potential for renewable thermal energy systems (RTES), particularly in hybrid configurations to provide industrial process heat (IPH). The first case study looks at heat pumps for district heating, and the second, the use of linear Fresnel collectors (LFCs) coupled with phase change material (PCM) thermal energy storage (TES) for direct steam generation (DSG). Using district heat as an input for the heat pump, three cases were run harvesting energy from ambient water (5 degrees C), sewage water (20 degrees C), and a solar collector (35 degrees C). Accounting for elevated costs of infrastructure for each heat source, the levelized cost of heat (LCOH) of the first case study ranged from $4-$15 per million British Thermal Units (MMBTU). For the second case study modeling LFCs with PCM and TES, the results show that a LCOH of $9-$15 per MMBTU is possible, depending on the direct normal irradiance.
AB - Industrial decarbonization is a key area that must be accelerated, to foster the removal of fossil fuels from the provision of heat, especially at low temperatures less than 300 degrees C. This paper looks at the results of two case studies for understanding the economics and potential for renewable thermal energy systems (RTES), particularly in hybrid configurations to provide industrial process heat (IPH). The first case study looks at heat pumps for district heating, and the second, the use of linear Fresnel collectors (LFCs) coupled with phase change material (PCM) thermal energy storage (TES) for direct steam generation (DSG). Using district heat as an input for the heat pump, three cases were run harvesting energy from ambient water (5 degrees C), sewage water (20 degrees C), and a solar collector (35 degrees C). Accounting for elevated costs of infrastructure for each heat source, the levelized cost of heat (LCOH) of the first case study ranged from $4-$15 per million British Thermal Units (MMBTU). For the second case study modeling LFCs with PCM and TES, the results show that a LCOH of $9-$15 per MMBTU is possible, depending on the direct normal irradiance.
KW - concentrated solar thermal
KW - direct steam generation
KW - heat pumps
KW - industrial decarbonization
KW - LCOH
KW - renewable thermal energy systems
KW - solar industrial process heat
KW - techno-economic analysis
M3 - Presentation
T3 - Presented at the Solar World Congress 2021, 25-29 October 2021
ER -