Abstract
We use sequential stress to investigate hurdles to bifacial photovoltaic (PV) module durability from lamination defects. We test mini-modules with glass/glass (G/G) and glass/transparent-backsheet (G/TB) constructions using either ethylene vinyl acetate or polyolefin elastomer (POE) based encapsulants under a modified IEC 63209-2 sequential stress. This sequence includes multiple iterations of damp heat (DH200), full spectrum light exposure (A3), thermal cycling (TC50), and humidity/freeze (HF10). We compare indoor stress with outdoor exposure. Results show similar relative trends in degradation after a year outdoors compared to our first stress cycle. Subsequent stress cycles impart more severe damage than outdoor exposure for the short outdoor duration used here. Edge-pinch lamination defects in G/G mini-modules limit durability causing delamination and cell cracks. Conversely, we observe greater degradation in G/TB mini-modules compared to G/G in the later stages of the stress sequence when the backsheets are directly exposed to UV-containing light. Our results highlight: 1) the utility of sequential stress testing to uncover degradation modes in bifacial PV, 2) implications of using mini-modules for testing PV quality, and 3) the importance of lamination defects that must be avoided to ensure durability as the industry adopts G/G or G/TB packaging.
Original language | American English |
---|---|
Pages (from-to) | 549-556 |
Number of pages | 8 |
Journal | IEEE Journal of Photovoltaics |
Volume | 15 |
Issue number | 4 |
DOIs | |
State | Published - 2025 |
NREL Publication Number
- NREL/JA-5K00-92842
Keywords
- accelerated stress testing
- bifacial modules
- durability
- photovoltaics (PVs)