Abstract
Local site ordering offers a new paradigm for property control in functional materials. However, systems that exhibit a propensity for local order and global disorder are often challenging to characterize, and demonstrations of ordering-induced property tuning are few and far between. Here, we demonstrate that short-range ordering tunes the optical absorption edge in the long-range disordered alloy system (ZnSnN2)1-x(ZnO)2x at x = 0.25. We use combinatorial cosputtering to synthesize a set of thin-film samples spanning this alloy space. X-ray diffraction demonstrates lattice contraction as a function of alloy composition, confirming that a mixed-anion and -cation alloy has been synthesized. Using N and O K-edge X-ray absorption near-edge structure in conjunction with simulations of cation-disordered supercell structures, we find that samples exhibit octet-rule-breaking motifs around both anions. Upon annealing at an alloy composition of x = 0.25, X-ray absorption analysis suggests that local motif structure shifts toward octet-rule-conserving while long-range disorder is maintained. Spectroscopic ellipsometry reveals that local ordering increases the absorption edge energy at constant composition. Additionally, alloy-induced optical absorption edge tuning is demonstrated. This work paves the way toward property tuning with short-range ordering in (ZnSnN2)1-x(ZnO)2x and beyond.
Original language | American English |
---|---|
Pages (from-to) | 3910-3919 |
Number of pages | 10 |
Journal | Chemistry of Materials |
Volume | 34 |
Issue number | 9 |
DOIs | |
State | Published - 2022 |
Bibliographical note
Publisher Copyright:© 2022 American Chemical Society.
NREL Publication Number
- NREL/JA-5K00-80624
Keywords
- functional materials
- local site ordering
- optical absorption
- semiconductor
- short-range ordering