Silencing Folylpolyglutamate Synthetase1 (FPGS1) in Switchgrass (Panicum virgatum L.) Improves Lignocellulosic Biofuel Production

Mitra Mazarei, Holly Baxter, Avinash Srivastava, Guifen Li, Hongli Xie, Alexandru Dumitrache, Miguel Rodriguez Jr., Jace Natzke, Ji-Yi Zhang, Geoffrey Turner, Robert Sykes, Mark Davis, Michael Udvardi, Zeng-Yu Wang, Brian Davison, Elison Blancaflor, Yuhong Tang, Charles Stewart Jr.

Research output: Contribution to journalArticlepeer-review

8 Scopus Citations


Switchgrass (Panicum virgatum L.) is a lignocellulosic perennial grass with great potential in bioenergy field. Lignocellulosic bioenergy crops are mostly resistant to cell wall deconstruction, and therefore yield suboptimal levels of biofuel. The one-carbon pathway (also known as C1 metabolism) is critical for polymer methylation, including that of lignin and hemicelluloses in cell walls. Folylpolyglutamate synthetase (FPGS) catalyzes a biochemical reaction that leads to the formation of folylpolyglutamate, an important cofactor for many enzymes in the C1 pathway. In this study, the putatively novel switchgrass PvFPGS1 gene was identified and its functional role in cell wall composition and biofuel production was examined by RNAi knockdown analysis. The PvFPGS1-downregulated plants were analyzed in the field over three growing seasons. Transgenic plants with the highest reduction in PvFPGS1 expression grew slower and produced lower end-of-season biomass. Transgenic plants with low-to-moderate reduction in PvFPGS1 transcript levels produced equivalent biomass as controls. There were no significant differences observed for lignin content and syringyl/guaiacyl lignin monomer ratio in the low-to-moderately reduced PvFPGS1 transgenic lines compared with the controls. Similarly, sugar release efficiency was also not significantly different in these transgenic lines compared with the control lines. However, transgenic plants produced up to 18% more ethanol while maintaining congruent growth and biomass as non-transgenic controls. Severity of rust disease among transgenic and control lines were not different during the time course of the field experiments. Altogether, the unchanged lignin content and composition in the low-to-moderate PvFPGS1-downregulated lines may suggest that partial downregulation of PvFPGS1 expression did not impact lignin biosynthesis in switchgrass. In conclusion, the manipulation of PvFPGS1 expression in bioenergy crops may be useful to increase biofuel potential with no growth penalty or increased susceptibility to rust in feedstock.

Original languageAmerican English
Article number843
Number of pages13
JournalFrontiers in Plant Science
StatePublished - 2020

Bibliographical note

Publisher Copyright:
© Copyright © 2020 Mazarei, Baxter, Srivastava, Li, Xie, Dumitrache, Rodriguez, Natzke, Zhang, Turner, Sykes, Davis, Udvardi, Wang, Davison, Blancaflor, Tang and Stewart.

NREL Publication Number

  • NREL/JA-2A00-77358


  • biofuel
  • folylpolyglutamate synthetase
  • lignocellulosic
  • PvFPGS1
  • RNAi-gene silencing
  • switchgrass


Dive into the research topics of 'Silencing Folylpolyglutamate Synthetase1 (FPGS1) in Switchgrass (Panicum virgatum L.) Improves Lignocellulosic Biofuel Production'. Together they form a unique fingerprint.

Cite this