Silicon Electrolyte Interface Stabilization (SEISta)

Research output: NRELManagement

Abstract

This report documents the Silicon Electrolyte Interface Stabilization team’s approach in 1) characterizing the early-stage silicon solid-electrolyte interphase (SEI) including progress on identifying the specific reaction pathways present in the formation of the SEI layer, and 2) establishing a procedure for measuring SEI growth rate at fixed potentials and different cycling regimes.Silicon is a viable alternative to graphitic carbon as an electrode in lithium-ion cells and can theoretically store >3,500 mAh/g. However, lifetime problems have been observed that severely limit its use in practical systems. The major issues appear to involve the stability of the electrolyte and the uncertainty associated with the formation of a stable SEI at the electrode. Recently, calendar-life studies have indicated that the SEI may not be stable even under conditions where the cell is supposedly static. Clearly, a more foundational understanding of the nature of the silicon/electrolyte interface is required if we are to solve these complex stability issues. A new multi-lab consortium has been formed to address a critical barrier in implementing a new class of materials used in lithium-i on batteries that will allow for smaller, cheaper, and better-performing batteries for electric-drive vehicles. This consortium, named the Silicon Electrolyte Interface Stabilization (SEISta) project, was formed to focus on overcoming the barrier to using such anode materials. Five national laboratories are involved: the National Renewable Energy Laboratory (NREL), Argonne National Laboratory (ANL), Lawrence Berkeley National Laboratory (LBNL), Oak Ridge National Laboratory (ORNL), and Sandia National Laboratories (SNL). The SEISta project was specifically developed to tackle the foundational understanding of the formation and evolution of the solid-electrolyte interphase on silicon. This project will have as its primary goal an understanding of the reactivity of the silicon and lithiated silicon interface with the electrolyte in lithium-ion systems. It consists of researchers from NREL, ANL, LBNL, ORNL, and SNL working toward clear unified goals. The Silicon Deep-Dive team, which focuses on the science and technology barriers in functional electrodes, is a critical partner in this work. Many of the researchers are shared between both teams, and we hold joint meetings to ensure effective communication between the teams.
Original languageAmerican English
Number of pages98
StatePublished - 2020

Bibliographical note

See the Vehicle Technologies Office Batteries 2019 Annual Progress Report at https://www.energy.gov/sites/prod/files/2020/06/f75/VTO_2019_APR_Batteries-FINAL2_-compressed_0.pdf

NREL Publication Number

  • NREL/MP-5F00-78712

Keywords

  • batteries
  • electric vehicles
  • silicon
  • solid-electrolyte interphase (SEI)

Fingerprint

Dive into the research topics of 'Silicon Electrolyte Interface Stabilization (SEISta)'. Together they form a unique fingerprint.

Cite this