Abstract
Reliable assessment of occupant thermal comfort can be difficult to obtain within automotive environments, especially under transient and asymmetric heating and cooling scenarios. Evaluation of HVAC system performance in terms of comfort commonly requires human subject testing, which may involve multiple repetitions, as well as multiple test subjects. Instrumentation (typically comprised of an array of temperature sensors) is usually only sparsely applied across the human body, significantly reducing the spatial resolution of available test data. Further, since comfort is highly subjective in nature, a single test protocol can yield a wide variation in results which can only be overcome by increasing the number of test replications and subjects. In light of these difficulties, various types of manikins are finding use in automotive testing scenarios. These manikins can act as human surrogates from which local skin and core temperatures can be obtained, which are necessary for accurately predicting local and whole body thermal sensation and comfort using a physiology-based comfort model (e.g., the Berkeley Comfort Model). This paper evaluates two different types of manikins, i) an adaptive sweating thermal manikin, which is coupled with a human thermoregulation model, running in real-time, to obtain realistic skin temperatures; and, ii) a passive sensor manikin, which is used to measure boundary conditions as they would act on a human, from which skin and core temperatures can be predicted using a thermophysiological model. The simulated physiological responses and comfort obtained from both of these manikin-model coupling schemes are compared to those of a human subject within a vehicle cabin compartment transient heat-up scenario.
Original language | American English |
---|---|
Number of pages | 5 |
DOIs | |
State | Published - 2015 |
Event | SAE 2015 World Congress & Exhibition - Detroit, Michigan Duration: 21 May 2015 → 23 May 2015 |
Conference
Conference | SAE 2015 World Congress & Exhibition |
---|---|
City | Detroit, Michigan |
Period | 21/05/15 → 23/05/15 |
NREL Publication Number
- NREL/CP-5400-70104
Keywords
- USDOE Office of Energy Efficiency and Renewable Energy (EERE)