Abstract
Using ultrafast transient absorption and time-resolved photoluminescence spectroscopies, we studied multiple exciton generation (MEG) in quantum dots (QDs) consisting of either PbSe, PbS, or a PbSxSe1-x alloy for various QD diameters with corresponding bandgaps (Eg) ranging from 0.6 to 1 eV. For each QD sample, we determine the MEG efficiency, ηMEG, defined in terms of the electron-hole pair creation energy (εeh) such that ηMEG = Eg/ εeh. In previous reports, we found that ηMEG is about two times greater in PbSe QDs compared to bulk PbSe, however, little could be said about the QD-size dependence of MEG. In this study, we find for both PbS and PbSxSe1-x alloyed QDs that ηMEG decreases lineally with increasing QD diameter within the strong confinement regime. When the QD radius is normalized by a material-dependent characteristic radius, defined as the radius at which the electron-hole Coulomb and confinement energies are equivalent, PbSe, PbS, and PbSxSe1-x exhibit similar MEG behaviors. Our results suggest that MEG increases with quantum confinement, and we discuss the interplay between a size-dependent MEG rate versus hot exciton cooling.
Original language | American English |
---|---|
Pages (from-to) | 3078-3085 |
Number of pages | 8 |
Journal | Nano Letters |
Volume | 13 |
Issue number | 7 |
DOIs | |
State | Published - 10 Jul 2013 |
NREL Publication Number
- NREL/JA-5900-58777
Keywords
- carrier multiplication
- exciton dynamics
- Multiple exciton generation
- PbS quantum dots
- quantum size effects
- solar energy conversion