Abstract
We model the performance of two-junction solar cells at very high temperatures of ~400 degrees C and beyond for applications such as hybrid PV/solar-thermal power production, and identify areas in which the design and performance characteristics behave significantly differently than at more conventional near-room-temperature operating conditions. We show that high-temperature operation reduces the sensitivity of the cell efficiency to spectral content, but increases the sensitivity to concentration, both of which have implications for energy yield in terrestrial PV applications. For other high-temperature applications such as near-sun space missions, our findings indicate that concentration may be a useful tool to enhance cell efficiency.
Original language | American English |
---|---|
Number of pages | 5 |
State | Published - 2017 |
Event | 2017 IEEE 44th Photovoltaic Specialists Conference (PVSC) - Washington, D.C. Duration: 25 Jun 2017 → 30 Jun 2017 |
Conference
Conference | 2017 IEEE 44th Photovoltaic Specialists Conference (PVSC) |
---|---|
City | Washington, D.C. |
Period | 25/06/17 → 30/06/17 |
Bibliographical note
See NREL/CP-5900-73951 for paper as published in IEEE proceedingsNREL Publication Number
- NREL/CP-5J00-67787
Keywords
- high temperature
- multijunctions
- photovoltaics