Abstract
The electronic structure of inorganic semiconductor interfaces functionalized with extended π-conjugated organic molecules can be strongly influenced by localized gap states or point defects, often present at low concentrations and hard to identify spectroscopically. At the same time, in transparent conductive oxides such as ZnO, the presence of these gap states conveys the desirable high conductivity necessary for function as electron-selective interlayer or electron collection electrode in organic optoelectronic devices. Here, we report on the direct spectroscopic detection of a donor state within the band gap of highly conductive zinc oxide by two-photon photoemission spectroscopy. We show that adsorption of the prototypical organic acceptor C60 quenches this state by ground-state charge transfer, with immediate consequences on the interfacial energy level alignment. Comparison with computational results suggests the identity of the gap state as a near-surface-confined oxygen vacancy.
Original language | American English |
---|---|
Article number | Article No. 094007 |
Number of pages | 9 |
Journal | Journal of Physics Condensed Matter |
Volume | 28 |
Issue number | 9 |
DOIs | |
State | Published - 12 Feb 2016 |
Bibliographical note
Publisher Copyright:© 2016 IOP Publishing Ltd.
NREL Publication Number
- NREL/JA-5K00-66154
Keywords
- gap state
- hybrid organic/inorganic interface
- two-photon photoemission
- ZnO