Stable Magnesium Zinc Oxide by Reactive Co-Sputtering for CdTe-Based Solar Cells

Yegor Samoilenko, Gavin Yeung, Amit Munshi, Ali Abbas, Carey Reich, Michael Walker, Matthew Reese, Andriy Zakutayev, J. Walls, Walajabad Sampath, Colin Wolden

Research output: Contribution to journalArticlepeer-review

22 Scopus Citations

Abstract

Magnesium zinc oxide (MZO) is a promising front contact material for CdTe solar cells. Due to its higher band gap than traditional CdS, MZO can reduce parasitic absorption to significantly increase short-circuit current density while also providing a benefit of conduction band offset tuning through Mg:Zn ratio optimization. MZO has been successfully implemented into CdTe devices, however its stability has been of concern. The MZO stability issue has been attributed to the presence of oxygen in the CdTe device processing ambient, leading to double-diode behavior (S-kink) in the current density-voltage curves. Here we report on MZO thin films deposited by reactive co-sputtering. The reactively co-sputtered MZO thin films have encouraging stability, show no significant variation in work function of the surface over a period of 6 months, as measured by Kelvin probe. Energy conversion efficiencies of around 16% have been achieved both with and without presence of oxygen in device processing ambients across multiple research facilities. These efficiencies should be possible to increase further by tuning of the thin film deposition and device processing parameters, especially through optimization of the back contact.

Original languageAmerican English
Article numberArticle No. 110521
Number of pages8
JournalSolar Energy Materials and Solar Cells
Volume210
DOIs
StatePublished - 15 Jun 2020

Bibliographical note

Publisher Copyright:
© 2020

NREL Publication Number

  • NREL/JA-5K00-75695

Keywords

  • CdTe
  • MgxZn1-xO
  • reactive sputtering
  • stability
  • thin film photovoltaics

Fingerprint

Dive into the research topics of 'Stable Magnesium Zinc Oxide by Reactive Co-Sputtering for CdTe-Based Solar Cells'. Together they form a unique fingerprint.

Cite this