Strategies to Achieve High Circularly Polarized Luminescence from Colloidal Organic-Inorganic Hybrid Perovskite Nanocrystals

Young-Hoon Kim, Yaxin Zhai, E. Gaulding, Severin Habisreutinger, Taylor Moot, Bryan Rosales, Haipeng Lu, Abhijit Hazarika, Roman Brunecky, Lance Wheeler, Joseph Berry, Matthew Beard, Joseph Luther

Research output: Contribution to journalArticlepeer-review

100 Scopus Citations

Abstract

Colloidal metal halide perovskite nanocrystals (NCs) with chiral ligands are outstanding candidates as a circularly polarized luminescence (CPL) light source due to many advantages such as high photoluminescence quantum efficiency, large spin-orbit coupling, and extensive tunability via composition and choice of organic ligands. However, achieving pronounced and controllable polarized light emission remains challenging. Here, we develop strategies to achieve high CPL responses from colloidal formamidinium lead bromide (FAPbBr3) NCs at room temperature using chiral surface ligands. First, we show that replacing a portion of typical ligands (oleylamine) with short chiral ligands ((R)-2-octylamine) during FAPbBr3 NC synthesis results in small and monodisperse NCs that yield high CPL with average luminescence dissymmetry g-factor, glum = 6.8 × 10-2. To the best of our knowledge, this is the highest among reported perovskite materials at room temperature to date and represents around 10-fold improvement over the previously reported colloidal CsPbClxBryI3-x-y NCs. In order to incorporate NCs into any optoelectronic or spintronic application, the NCs necessitate purification, which removes a substantial amount of the chiral ligands and extinguishes the CPL signals. To circumvent this issue, we also developed a postsynthetic ligand treatment using a different chiral ligand, (R-/S-)methylbenzylammonium bromide, which also induces a CPL with an average glum = ±1.18 × 10-2. This postsynthetic method is also amenable for long-range charge transport since methylbenzylammonium is quite compact in relation to other surface ligands. Our demonstrations of high CPL and glum from both as-synthesized and purified perovskite NCs at room temperature suggest a route to demonstrate colloidal NC-based spintronics.

Original languageAmerican English
Pages (from-to)8816-8825
Number of pages10
JournalACS Nano
Volume14
Issue number7
DOIs
StatePublished - 2020

Bibliographical note

Publisher Copyright:
Copyright © 2020 American Chemical Society.

NREL Publication Number

  • NREL/JA-5900-76365

Keywords

  • chiral ligands
  • circularly polarized luminescence
  • colloidal nanocrystals
  • formamidinium lead bromide
  • time-resolved spectroscopy

Fingerprint

Dive into the research topics of 'Strategies to Achieve High Circularly Polarized Luminescence from Colloidal Organic-Inorganic Hybrid Perovskite Nanocrystals'. Together they form a unique fingerprint.

Cite this