Strategy for Passivating Char Efficiently at the Pilot Scale

Research output: NRELPresentation


Fast pyrolysis is a promising pathway for the commercialization of liquid transportation fuels from biomass. Fast pyrolysis is performed at moderate heat (450-600 degrees Celcius) in an oxygen-deficient environment. One of the products of fast pyrolysis is biochar, which is often used as a heat source or as a soil amendment. Biochar is a partially reacted solid that is created in the production of bio-oil during fast pyrolysis. Biochar produced at these conditions contains significant quantities of carbon that adsorb oxygen when exposed to air. Biochar adsorption of oxygen is an exothermic process that may generate sufficient heat for combustion in ambient air. Biochar is also a self-insulating material which compounds the effects of heat generated internally. These factors lead to safety concerns and material handling difficulties. The Thermochemical Process Development Unit at the National Renewable Energy Laboratory operates a pilot plant that may be configured for fast pyrolysis, gasification, and will be introducing catalytic fast pyrolysis capabilities in 2018. The TCPDU designed and installed a system to introduce oxygen to collected biochar systematically for a controlled passivation. Biochar is collected and cooled in an oxygen deficient environment during fast pyrolysis. Oxygen is then introduced to the biochar on a mass flow basis. A sparger imbedded within the biochar sample near the bottom of the bed flows air diluted with nitrogen into the char bed, and excess gasses are removed from the top of the collection drum, above the char bed. Pressure within the collection drum is measured indicating adequate flow through filters. Sample weight is recorded before and after passivation. During passivation, temperature is measured at 18 points within the char bed. Oxygen content and temperature are measured leaving the char bed. Maximum temperature parameters were established to ensure operator safety during biochar passivation. Extensive passivation data was collected on pine and blended feedstocks and has been analyzed to characterize the exotherm of char samples. Observations and data collected while passivating char will be discussed.
Original languageAmerican English
Number of pages15
StatePublished - 2017

Publication series

NamePresented at tcbiomass 2017, 19-21 September 2017, Chicago, Illinois

NREL Publication Number

  • NREL/PR-5100-70214


  • adsorption
  • biochar
  • biomass
  • char
  • fast pyrolysis
  • passivation
  • transportation fuels


Dive into the research topics of 'Strategy for Passivating Char Efficiently at the Pilot Scale'. Together they form a unique fingerprint.

Cite this