Abstract
In this contribution, we investigate why different dopant species and back-contact architectures lead to different sub-bandgap behaviors in CdSeTe solar cells. Through extraction of the absorptance from photoluminescence spectra, we parse the contributions from material properties and from cell optics. We show that, as expected, arsenic doping leads to an increase in sub-bandgap features over traditional copper doping, and that this is a material property of arsenic-doped CdSeTe. Conversely, the increase in sub-bandgap absorption and emission using alternative back contact architectures can be attributed to the cell optics, and more specifically to the increased reflectance of the back interface, leading to at least a doubling of the pathlength for sub-bandgap photons.
Original language | American English |
---|---|
Pages | 1754-1757 |
Number of pages | 4 |
DOIs | |
State | Published - 20 Jun 2021 |
Event | 48th IEEE Photovoltaic Specialists Conference, PVSC 2021 - Fort Lauderdale, United States Duration: 20 Jun 2021 → 25 Jun 2021 |
Conference
Conference | 48th IEEE Photovoltaic Specialists Conference, PVSC 2021 |
---|---|
Country/Territory | United States |
City | Fort Lauderdale |
Period | 20/06/21 → 25/06/21 |
Bibliographical note
Publisher Copyright:© 2021 IEEE.
NREL Publication Number
- NREL/CP-5900-80316
Keywords
- arsenic doping
- cadmium selenide telluride
- photoluminescence
- sub-bandgap features