Supercritical Carbon Dioxide Power Cycle Design and Configuration Optimization to Minimize Levelized Cost of Energy of Molten Salt Power Towers Operating at 650 degrees C

Research output: Contribution to journalArticlepeer-review

100 Scopus Citations

Abstract

This analysis investigates the design, cost, and performance of the simple, recompression, and partial-cooling configurations of the supercritical carbon dioxide power cycle integrated with a molten salt power tower concentrating solar power system. This paper uses a steady-state model to design each cycle with varying amounts of recuperator conductance to understand performance and cost trade-offs. The recompression cycle can achieve a higher thermal efficiency than the partial-cooling cycle, and the partial-cooling cycle achieves a higher thermal efficiency than the simple cycle. The partial-cooling cycle is the most expensive cycle because it requires more total turbomachinery capacity. However, the partial-cooling cycle has the largest temperature range of heat input. This feature leads to cheaper two-tank thermal energy storage, higher receiver efficiencies, and lower mass flow rates in the power tower. Crucially, the lower mass flow rates significantly reduce pump electricity consumption relative to the recompression-cycle system. Consequently, this study finds that the power tower system integrated with the partial-cooling cycle is both cheaper and generates more net electricity than systems integrated with the other two cycles. Finally, this paper presents a parametric study on the air-cooler approach temperature and shows that small approach temperatures can improve cycle efficiency and increase the temperature range of heat input, which can lead to smaller optimal approach temperatures than may be expected.

Original languageAmerican English
Pages (from-to)27-36
Number of pages10
JournalSolar Energy
Volume181
DOIs
StatePublished - 15 Mar 2019

Bibliographical note

Publisher Copyright:
© 2019 International Solar Energy Society

NREL Publication Number

  • NREL/JA-5500-72674

Keywords

  • Concentrating solar power
  • Partial-cooling cycle
  • Recompression cycle
  • Supercritical CO cycle

Fingerprint

Dive into the research topics of 'Supercritical Carbon Dioxide Power Cycle Design and Configuration Optimization to Minimize Levelized Cost of Energy of Molten Salt Power Towers Operating at 650 degrees C'. Together they form a unique fingerprint.

Cite this