Abstract
Transparent conducting oxides (TCOs) based on gallium-doped ZnO (GZO) are deposited using a radio-frequency (RF) superimposed direct current (DC) magnetron system. The electrical, optical, and structural properties of GZO films deposited by varying the RF/DC power ratio are presented. Our results indicate an increase in conductivity of GZO films up to 3800 S/cm when grown in a pure argon atmosphere at an RF/DC power ratio of 1:1. Optical transmittance for all films is ∼90% in the visible range. We find our high-conductivity samples to be highly textured wurtzite ZnO with the c-axis oriented perpendicular to the substrate. The films are relatively smooth with root-mean-square surface roughness of 2.0 nm. This high-performance GZO material deposited using this approach can pave the way to development of high-conductivity TCOs at low cost from Earth-abundant materials to enable cost-effective solar conversion technologies.
Original language | American English |
---|---|
Pages | 3270-3274 |
Number of pages | 5 |
DOIs | |
State | Published - 2010 |
Event | 35th IEEE Photovoltaic Specialists Conference, PVSC 2010 - Honolulu, HI, United States Duration: 20 Jun 2010 → 25 Jun 2010 |
Conference
Conference | 35th IEEE Photovoltaic Specialists Conference, PVSC 2010 |
---|---|
Country/Territory | United States |
City | Honolulu, HI |
Period | 20/06/10 → 25/06/10 |
NREL Publication Number
- NREL/CP-520-47728
Keywords
- magnetron sputtering
- solar photovoltaics