Abstract
Perovskite solar cells (PSCs) with an inverted structure (often referred to as the p–i–n architecture) are attractive for future commercialization owing to their easily scalable fabrication, reliable operation and compatibility with a wide range of perovskite-based tandem device architectures1,2. However, the power conversion efficiency (PCE) of p–i–n PSCs falls behind that of n–i–p (or normal) structure counterparts3–6. This large performance gap could undermine efforts to adopt p–i–n architectures, despite their other advantages. Given the remarkable advances in perovskite bulk materials optimization over the past decade, interface engineering has become the most important strategy to push PSC performance to its limit7,8. Here we report a reactive surface engineering approach based on a simple post-growth treatment of 3-(aminomethyl)pyridine (3-APy) on top of a perovskite thin film. First, the 3-APy molecule selectively reacts with surface formamidinium ions, reducing perovskite surface roughness and surface potential fluctuations associated with surface steps and terraces. Second, the reaction product on the perovskite surface decreases the formation energy of charged iodine vacancies, leading to effective n-type doping with a reduced work function in the surface region. With this reactive surface engineering, the resulting p–i–n PSCs obtained a PCE of over 25 per cent, along with retaining 87 per cent of the initial PCE after over 2,400 hours of 1-sun operation at about 55 degrees Celsius in air.
Original language | American English |
---|---|
Pages (from-to) | 278-283 |
Number of pages | 6 |
Journal | Nature |
Volume | 611 |
Issue number | 7935 |
DOIs | |
State | Published - 2022 |
Bibliographical note
Publisher Copyright:© 2022, The Author(s), under exclusive licence to Springer Nature Limited.
NREL Publication Number
- NREL/JA-5900-83612
Keywords
- high efficiency
- p-i-n architecture
- perovskite solar cells
- stability
- surface reaction