Switching It Up: New Mechanisms Revealed in Wurtzite-Type Ferroelectrics

Cheng-Wei Lee, Keisuke Yazawa, Andriy Zakutayev, Geoff Brennecka, Prashun Gorai

Research output: Contribution to journalArticlepeer-review

4 Scopus Citations

Abstract

Wurtzite-type ferroelectrics have drawn increasing attention due to the promise of better performance and integration than traditional oxide ferroelectrics with semiconductors such as Si, SiC, and III-V compounds. However, wurtzite-type ferroelectrics generally require enormous electric fields, approaching breakdown, to reverse their polarization. The underlying switching mechanism(s), especially for multinary compounds and alloys, remains elusive. Here, we examine the switching behaviors in Al1-xScxN alloys and wurtzite-type multinary candidate compounds we recently computationally identified. We find that switching in these tetrahedrally coordinated materials proceeds via a variety of nonpolar intermediate structures and that switching barriers are dominated by the more-electronegative cations. For Al1-xScxN alloys, we find that the switching pathway changes from a collective mechanism to a lower-barrier mechanism enabled by inversion of individual tetrahedra with increased Sc composition. Our findings provide insights for future engineering and realization of wurtzite-type materials and open a door to understanding domain motion.
Original languageAmerican English
Number of pages9
JournalScience Advances
Volume10
Issue number20
DOIs
StatePublished - 2024

NREL Publication Number

  • NREL/JA-5K00-87652

Keywords

  • ferroelectrics
  • polarization
  • wurtzite

Fingerprint

Dive into the research topics of 'Switching It Up: New Mechanisms Revealed in Wurtzite-Type Ferroelectrics'. Together they form a unique fingerprint.

Cite this