Abstract
It is well known that the addition of alkali elements such as Na and K during and after growth of Cu(In, Ga)Se2 (CIGS) has beneficial effects on the electronic properties of bulk material, improving device performance significantly. While the device level effects have been measured and reported, a direct observations of the localization of Na including its chemical nature are missing, and the impact of Na on elemental and phase segregation during CIGS growth is not fully understood. We investigate these aspects to shine light on the role of Na in CIGS solar cells with the ultimate goal of increasing their conversion efficiency. Utilizing a suite of synchrotron based x-ray characterization techniques, we discuss the challenges and advantages of these techniques for investigating segregation of main constituents of CIGS, Na distribution, chemical bonding of Na, and collection efficiency in CIGS as well as their correlations.
Original language | American English |
---|---|
Pages | 31-34 |
Number of pages | 4 |
DOIs | |
State | Published - 18 Nov 2016 |
Event | 43rd IEEE Photovoltaic Specialists Conference, PVSC 2016 - Portland, United States Duration: 5 Jun 2016 → 10 Jun 2016 |
Conference
Conference | 43rd IEEE Photovoltaic Specialists Conference, PVSC 2016 |
---|---|
Country/Territory | United States |
City | Portland |
Period | 5/06/16 → 10/06/16 |
Bibliographical note
Publisher Copyright:© 2016 IEEE.
NREL Publication Number
- NREL/CP-5K00-67991
Keywords
- alkali
- CIGS
- grain boundaries
- Na
- XRF