Synergistic Dual-Cure Reactions for the Fabrication of Thermosets by Chemical Heating

Michael McGraw, Bennett Addison, Ryan Clarke, Robert Allen, Nicholas Rorrer

Research output: Contribution to journalArticlepeer-review

Abstract

Large composite structures, such as those used in wind energy applications, rely on the bulk polymerization of thermosets on an impressively large scale. To accomplish this, traditional thermoset polymerizations require both elevated temperatures (>100 degrees C) and extended cure durations (>5 h) for complete conversion, necessitating the use of oversize ovens or heated molds. In turn, these requirements lead to energy-intensive polymerizations, incurring high manufacturing costs and process emissions. In this study, we develop thermoset polymerizations that can be initiated at room temperature through a transformative “chemical heating” concept, in which the exothermic energy of a secondary reaction is used to facilitate the heating of a primary thermoset polymerization. By leveraging a redox-initiated methacrylate free radical polymerization as a source of exothermic chemical energy, we can achieve peak reaction temperatures >140 degrees C to initiate the polymerization of epoxy-anhydride thermosets without external heating. Furthermore, by employing Trojan horse methacrylate monomers to induce mixing between methacrylate and epoxy-anhydride domains, we achieve the synthesis of homogeneous hybrid polymeric materials with competitive thermomechanical properties and tunability. Herein, we establish a proof-of-concept for our innovative chemical heating method and advocate for its industrial integration for more energy-efficient and streamlined manufacturing of wind blades and large composite parts more broadly.
Original languageAmerican English
Pages (from-to)11913-11927
Number of pages15
JournalACS Sustainable Chemistry and Engineering
Volume12
Issue number32
DOIs
StatePublished - 2024

NREL Publication Number

  • NREL/JA-2800-90553

Keywords

  • chemical heating
  • composite synthesis
  • dual cure
  • energy efficiency
  • manufacturing
  • recyclable-by-design
  • thermosets

Fingerprint

Dive into the research topics of 'Synergistic Dual-Cure Reactions for the Fabrication of Thermosets by Chemical Heating'. Together they form a unique fingerprint.

Cite this