Abstract
This paper presents the comparison of the annual performance and the Levelised Cost of Energy (LCOE) of two high- temperature solar power tower configurations using a 565MWth chloride salt receiver and a 540 MWth liquid sodium receiver. Each power tower consists of a sodium or salt receiver, a 175?m high concrete tower, and a two-tank chloride salt system for thermal energy storage (TES). The power plants were simulated using SolarTherm to estimate their energy per year, capacity factor, and LCOE. The simulation was verified against the System Advisor Model (SAM), showing that the LCOE calculation differences are within ±1.0%. Results showed that the sodium-receiver system yields 69.60 USD/MWh real LCOE, versus 78.55 USD/MWh for the chloride salt system. Results also showed that sodium wins here due to a smaller and more efficient receiver, enabled by higher flux limits and reduced field size, leading to less mirror reflective area and site improvement cost.
Original language | American English |
---|---|
Number of pages | 10 |
DOIs | |
State | Published - 12 May 2022 |
Event | 26th International Conference on Concentrating Solar Power and Chemical Energy Systems, SolarPACES 2020 - Freiburg, Virtual, Germany Duration: 28 Sep 2020 → 2 Oct 2020 |
Conference
Conference | 26th International Conference on Concentrating Solar Power and Chemical Energy Systems, SolarPACES 2020 |
---|---|
Country/Territory | Germany |
City | Freiburg, Virtual |
Period | 28/09/20 → 2/10/20 |
Bibliographical note
Publisher Copyright:© 2022 Author(s).
NREL Publication Number
- NREL/CP-5700-83282
Keywords
- capacity factor
- chemical elements
- energy storage
- solar power plants