System-Level Design Studies for Large Rotors

Christopher Bay, Kathryn Johnson, Daniel Zalkind, Gavin Ananda, Mayank Chetan, Dana Martin, Eric Loth, D. Griffith, Michael Selig, Lucy Pao

Research output: Contribution to journalArticlepeer-review

32 Scopus Citations

Abstract

We examine the effect of rotor design choices on the power capture and structural loading of each major wind turbine component. A harmonic model for structural loading is derived from simulations using the National Renewable Energy Laboratory (NREL) aeroelastic code FAST to reduce computational expense while evaluating design trade-offs for rotors with radii greater than 100m. Design studies are performed, which focus on blade aerodynamic and structural parameters as well as different hub configurations and nacelle placements atop the tower. The effects of tower design and closed-loop control are also analyzed. Design loads are calculated according to the IEC design standards and used to create a mapping from the harmonic model of the loads and quantify the uncertainty of the transformation. Our design studies highlight both industry trends and innovative designs: we progress from a conventional, upwind, three-bladed rotor to a rotor with longer, more slender blades that is downwind and two-bladed. For a 13MW design, we show that increasing the blade length by 25m, while decreasing the induction factor of the rotor, increases annual energy capture by 11% while constraining peak blade loads. A downwind, two-bladed rotor design is analyzed, with a focus on its ability to reduce peak blade loads by 10% per 5<span classCombining double low line inline-formula of cone angle and also reduce total blade mass. However, when compared to conventional, three-bladed, upwind designs, the peak main-bearing load of the upscaled, downwind, two-bladed rotor is increased by 280%. Optimized teeter configurations and individual pitch control can reduce non-rotating damage equivalent loads by 45% and 22%, respectively, compared with fixed-hub designs.

Original languageAmerican English
Pages (from-to)595-618
Number of pages24
JournalWind Energy Science
Volume4
Issue number4
DOIs
StatePublished - 2019

Bibliographical note

Publisher Copyright:
© 2019 BMJ Publishing Group. All rights reserved.

NREL Publication Number

  • NREL/JA-5000-75419

Keywords

  • systems engineering
  • wind turbine design

Fingerprint

Dive into the research topics of 'System-Level Design Studies for Large Rotors'. Together they form a unique fingerprint.

Cite this