TY - JOUR
T1 - Technical, Economic, Energetic, and Environmental Evaluation of Pretreatment Strategies for Scaling Control in Brackish Water Desalination Brine Treatment
T2 - Article No. 708
AU - Lugo, Abdiel
AU - Mejia-Saucedo, Carolina
AU - Senanayake, Punhasa
AU - Stoll, Zachary
AU - Sitterley, Kurban
AU - Wang, Huiyao
AU - Kota, Krishna
AU - Kuravi, Sarada
AU - Fthenakis, Vasilis
AU - Kurup, Parthiv
AU - Xu, Pei
PY - 2025
Y1 - 2025
N2 - Effective pretreatment is essential for achieving long-term stable operation and high water recovery during the desalination of alternative waters. This study developed a process modeling approach for technical, economic, energetic, and environmental assessments of pretreatment technologies to identify the impacts of each technology treating brackish water desalination brine with high scaling propensity. The model simulations evaluated individual pretreatment technologies, including chemical softening (CS), chemical coagulation (CC), electrocoagulation (EC), and ion exchange (IX). In addition, combinations of these pretreatment technologies aiming at the effective reduction of key scaling constituents such as hardness and silica were investigated. The three evaluation parameters in this assessment consist of levelized cost of water (LCOW, $/m3), specific energy consumption and cumulative energy demand (SEC|CED, kWh/m3), and carbon dioxide emissions (CO2, kg CO2-eq/m3). The case study evaluated in this work was the desalination brine from the Kay Bailey Hutchison Desalination Plant (KBHDP) with a total dissolved solids (TDS) concentration of 11,000 mg/L and rich in hardness and silica. The evaluation of individual pretreatment units from the highest to lowest LCOW, SEC|CED, and CO2 emissions in the KBHDP brine was IX > CS > EC > CC, CS > IX > EC > CC, and CC > CS > EC > IX, respectively. In the case of pretreatment combinations for the KBHDP, the EC + IX treatment combination was shown to be the best in terms of the LCOW and CO2 emissions. The modeling and evaluation of these pretreatment units provide valuable guidance on the selection of cost-effective, energy-efficient, and environmentally sustainable pretreatment technologies tailored to desalination brine applications for minimal- or zero-liquid discharge.
AB - Effective pretreatment is essential for achieving long-term stable operation and high water recovery during the desalination of alternative waters. This study developed a process modeling approach for technical, economic, energetic, and environmental assessments of pretreatment technologies to identify the impacts of each technology treating brackish water desalination brine with high scaling propensity. The model simulations evaluated individual pretreatment technologies, including chemical softening (CS), chemical coagulation (CC), electrocoagulation (EC), and ion exchange (IX). In addition, combinations of these pretreatment technologies aiming at the effective reduction of key scaling constituents such as hardness and silica were investigated. The three evaluation parameters in this assessment consist of levelized cost of water (LCOW, $/m3), specific energy consumption and cumulative energy demand (SEC|CED, kWh/m3), and carbon dioxide emissions (CO2, kg CO2-eq/m3). The case study evaluated in this work was the desalination brine from the Kay Bailey Hutchison Desalination Plant (KBHDP) with a total dissolved solids (TDS) concentration of 11,000 mg/L and rich in hardness and silica. The evaluation of individual pretreatment units from the highest to lowest LCOW, SEC|CED, and CO2 emissions in the KBHDP brine was IX > CS > EC > CC, CS > IX > EC > CC, and CC > CS > EC > IX, respectively. In the case of pretreatment combinations for the KBHDP, the EC + IX treatment combination was shown to be the best in terms of the LCOW and CO2 emissions. The modeling and evaluation of these pretreatment units provide valuable guidance on the selection of cost-effective, energy-efficient, and environmentally sustainable pretreatment technologies tailored to desalination brine applications for minimal- or zero-liquid discharge.
KW - carbon emissions
KW - desalination brine treatment
KW - pretreatment technology
KW - process modeling
KW - specific energy consumption
KW - technoeconomic analysis
U2 - 10.3390/w17050708
DO - 10.3390/w17050708
M3 - Article
SN - 2073-4441
VL - 17
JO - Water (Switzerland)
JF - Water (Switzerland)
IS - 5
ER -