TY - JOUR
T1 - Techno-Economic and Life-Cycle Analysis of Strategies for Improving Operability and Biomass Quality in Catalytic Fast Pyrolysis of Forest Residues
T2 - Article No. 100225
AU - Thompson, David
AU - Hartley, Damon
AU - Wiatrowski, Matthew
AU - Klinger, Jordan
AU - Paudel, Rajiv
AU - Ou, Longwen
AU - Cai, Hao
PY - 2025
Y1 - 2025
N2 - Many of the challenges faced by the first commercial biorefineries were associated with feedstock handling, quality, and cost. Strategies are needed to enable further expansion of biorefineries and meet the growing demand for bio-based fuels and products. Here, we examine 2 key feedstock challenges and mitigation strategies in the context of a catalytic fast pyrolysis (CFP) biorefinery: (1) the operability of the feed system, which may be improved by modifying the minimum particle size fed to the reactor, and (2) the quality of the biomass, which may be improved by employing air classification to remove undesirable material and increase fuel yields. We conduct techno-economic analysis (TEA) and life-cycle analysis for these strategies, employing a discrete event simulation model for biomass preprocessing combined with a series of correlations developed from literature data and a rigorous CFP conversion model. Our results highlight the importance of balancing increased cost and material losses from preprocessing against improved operability and fuel yields. Economics and sustainability were optimized when operating at the lowest minimum particle size, emphasizing the importance of minimizing material losses while maintaining the operability of the process. Economically, additional costs and material losses from air classification could be acceptable due to improved biomass conversion, and an optimum air classification speed was identified; however, the fuel GHG emissions were minimized when air classification was not used. Valorizing material removed during preprocessing as a coproduct could improve economics and sustainability, decreasing the burden of material losses.
AB - Many of the challenges faced by the first commercial biorefineries were associated with feedstock handling, quality, and cost. Strategies are needed to enable further expansion of biorefineries and meet the growing demand for bio-based fuels and products. Here, we examine 2 key feedstock challenges and mitigation strategies in the context of a catalytic fast pyrolysis (CFP) biorefinery: (1) the operability of the feed system, which may be improved by modifying the minimum particle size fed to the reactor, and (2) the quality of the biomass, which may be improved by employing air classification to remove undesirable material and increase fuel yields. We conduct techno-economic analysis (TEA) and life-cycle analysis for these strategies, employing a discrete event simulation model for biomass preprocessing combined with a series of correlations developed from literature data and a rigorous CFP conversion model. Our results highlight the importance of balancing increased cost and material losses from preprocessing against improved operability and fuel yields. Economics and sustainability were optimized when operating at the lowest minimum particle size, emphasizing the importance of minimizing material losses while maintaining the operability of the process. Economically, additional costs and material losses from air classification could be acceptable due to improved biomass conversion, and an optimum air classification speed was identified; however, the fuel GHG emissions were minimized when air classification was not used. Valorizing material removed during preprocessing as a coproduct could improve economics and sustainability, decreasing the burden of material losses.
KW - air classification
KW - catalytic fast pyrolysis
KW - compositional variability
KW - feedstock preprocessing
KW - integrated biorefinery
KW - LCA
KW - TEA
U2 - 10.1016/j.nxener.2024.100225
DO - 10.1016/j.nxener.2024.100225
M3 - Article
SN - 2949-821X
VL - 7
JO - Next Energy
JF - Next Energy
ER -