Techno-Economic and Resource Analysis of Hydroprocessed Renewable Jet Fuel

Ling Tao, Anelia Milbrandt, Yanan Zhang, Wei Cheng Wang

Research output: Contribution to journalArticlepeer-review

94 Scopus Citations


Background: Biomass-derived jet fuel is an alternative jet fuel (AJF) showing promise of reducing the dependence on fossil fuel and greenhouse gas emissions. Hydroprocessed esters and fatty acids (HEFA) concept is also known as one of the pathways for producing bio jet fuel. HEFA fuel was approved by the American Society for Testing and Materials in 2011, and can be blended up to 50% with conventional jet fuel. Since then, several HEFA economic and life-cycle assessments have been published in literature. However, there have been limited analyses on feedstock availability, composition, and their impact on hydrocarbon yield (particularly jet blendstock yield) and overall process economics. Results: This study examines over 20 oil feedstocks, their geographic distribution and production levels, oil yield, prices, and chemical composition. The results of our compositional analysis indicate that most oils contain mainly C16 and C18 fatty acids except pennycress, yellow grease, and mustard, which contain higher values and thus would require hydrocracking to improve jet fuel production. Coconut oil has a large content of shorter carbon fatty acids, making it a good feedstock candidate for renewable gasoline instead of jet substitutes' production. Techno-economic analysis (TEA) was performed for five selected oil feedstocks - camelina, pennycress, jatropha, castor bean, and yellow grease - using the HEFA process concept. Conclusion: The resource analysis indicates that oil crops currently grown in the United States (namely soybean) have relatively low oil yield when compared to oil crops grown in other parts of the world, such as palm, coconut, and jatropha. Also, non-terrestrial oil sources, such as animal fats and greases, have relatively lower prices than terrestrial oil crops. The minimum jet fuel selling price for these five resources ranges between $3.8 and $11.0 per gallon. The results of our TEA and resource studies indicate the key cost drivers for a biorefinery converting oil to jet hydrocarbons are as follows: oil price, conversion plant capacity, fatty acid profile, addition of hydrocracker, and type of hydroprocessing catalysts.

Original languageAmerican English
Article number261
Number of pages16
JournalBiotechnology for Biofuels
Issue number1
StatePublished - 2017

Bibliographical note

Publisher Copyright:
© 2017 The Author(s).

NREL Publication Number

  • NREL/JA-5100-67597


  • Alternative jet fuel
  • Feedstock
  • Hydroprocessed renewable jet fuel
  • Lipids
  • Resources
  • Techno-economics analysis


Dive into the research topics of 'Techno-Economic and Resource Analysis of Hydroprocessed Renewable Jet Fuel'. Together they form a unique fingerprint.

Cite this