Abstract
Phase change material (PCM)-based thermal energy storage (TES) can provide energy and cost savings and peak demand reduction benefits for grid-interactive residential buildings. Researchers established that these benefits vary greatly depending on the PCM phase change temperature (PCT), total TES storage capacity, system configuration and location and climate of the building. In this study, preliminary techno-economic performance is reported for a novel heat pump (HP)-integrated TES system using an idealized approach. A simplified HP-TES was modeled for 1 year of space heating and cooling loads for a residential building in three different climates in the United States. The vapor compression system of the HP was modified to integrate with TES, and all heat transfer to and from the TES was mediated by the HP. A single PCM was used for heating and cooling, and the PCT and TES capacity were varied to observe their effects on the building's energy consumption, peak load shifting and cost savings. The maximum reduction in electric consumption, utility cost and peak electric demand were achieved at a PCT of 30 degrees C for New York City and 20 degrees C for Houston and Birmingham. Peak energy consumption in Houston, New York City, and Birmingham was reduced by 47%, 53%, and 70%, respectively, by shifting peak load using a time-of-use utility schedule. TES with 170 MJ storage capacity allowed for maximum demand shift from on-peak to off-peak hours, with diminishing returns once the TES capacity equaled the daily building thermal loads experienced during the most extreme ambient conditions.
Original language | American English |
---|---|
Number of pages | 23 |
Journal | Energies |
Volume | 16 |
Issue number | 10 |
DOIs | |
State | Published - 2023 |
NREL Publication Number
- NREL/JA-5500-86628
Keywords
- heat pumps
- peak demand
- phase change material
- phase change temperature
- residential buildings
- storage capacity
- thermal energy storage