Abstract
The National Renewable Energy Laboratory is leading the liquid (molten salt) power tower pathway for the U.S. Department of Energy's concentrating solar power Gen3 initiative. The Gen3 liquid pathway required updated designs to three major components: the tower and receiver, the thermal energy storage tanks, and the power cycle. We assume a 100 MWe net system output and used the System Advisor Model (SAM) to complete a technoeconomic cost analysis of the Gen3 liquid pathway design and estimate its levelized cost of electricity. This paper summarizes the methodology and results of that analysis.
Original language | American English |
---|---|
Number of pages | 8 |
DOIs | |
State | Published - 12 May 2022 |
Event | 26th International Conference on Concentrating Solar Power and Chemical Energy Systems, SolarPACES 2020 - Freiburg, Virtual, Germany Duration: 28 Sep 2020 → 2 Oct 2020 |
Conference
Conference | 26th International Conference on Concentrating Solar Power and Chemical Energy Systems, SolarPACES 2020 |
---|---|
Country/Territory | Germany |
City | Freiburg, Virtual |
Period | 28/09/20 → 2/10/20 |
Bibliographical note
See NREL/CP-5700-77852 for preprintNREL Publication Number
- NREL/CP-5700-83280
Keywords
- chloride salt
- CSP
- Gen3
- SAM
- solar