Abstract
In this work, we explore the spanwise velocities in the wake of a yawed wind turbine. In the curled wake model, these motions are induced by a collection of vortices shed from the rotor plane. The direction of the vorticity generated by yaw is aligned with the main flow (streamwise) direction. The streamwise vorticity induces velocities in the spanwise directions. These are the motions responsible for creating the curled wake mechanism. In this work, we explore a more accurate formulation for this mechanism, using a vortex cylinder. Under certain assumptions, the new and original curled wake models yield the same mathematical formulation. Also, both models predict an elliptic distribution of vortex strength, where the main difference is the location of the vortices.
Original language | American English |
---|---|
Article number | Article No. 012069 |
Number of pages | 7 |
Journal | Journal of Physics: Conference Series |
Volume | 1452 |
Issue number | 1 |
DOIs | |
State | Published - 3 Mar 2020 |
Event | North American Wind Energy Academy, NAWEA 2019 and the International Conference on Future Technologies in Wind Energy 2019, WindTech 2019 - Amherst, United States Duration: 14 Oct 2019 → 16 Oct 2019 |
Bibliographical note
Publisher Copyright:© 2020 IOP Publishing Ltd. All rights reserved.
NREL Publication Number
- NREL/JA-5000-75357
Keywords
- curled wake model
- shed vortices
- wind energy
- yawed wind turbine