Abstract
Battery energy storage systems (BESS) are used for a variety of applications, with their economic benefit often being the decisive factor for deployment. A multitude of physico-chemical aging mechanisms lead to capacity fade over a BESS life cycle. The models that are used to describe this capacity fade are prone to inherent model errors. Through a holistic techno-economic modelling approach, we investigate the impact of battery degradation modelling uncertainty on the economic benefit of representative BESS applications. Here, it is shown how improved parameter fit quality can reduce the resulting economic uncertainty. Furthermore, we highlight that the consideration of degradation modelling uncertainty is especially crucial when: (i) the cash flow highly depends on the available battery capacity, (ii) a fixed, e.g. warranty mandated, state of health limit acts as the threshold for battery end-of-life, (iii) long evaluation periods and low discount rates are the focus of economic evaluation.
Original language | American English |
---|---|
Number of pages | 5 |
DOIs | |
State | Published - 2022 |
Event | 2022 IEEE Power and Energy Society General Meeting, PESGM 2022 - Denver, United States Duration: 17 Jul 2022 → 21 Jul 2022 |
Conference
Conference | 2022 IEEE Power and Energy Society General Meeting, PESGM 2022 |
---|---|
Country/Territory | United States |
City | Denver |
Period | 17/07/22 → 21/07/22 |
Bibliographical note
Publisher Copyright:© 2022 IEEE.
NREL Publication Number
- NREL/CP-5700-84986
Keywords
- aging
- battery energy storage system
- degradation
- lithium-ion
- techno-economic analysis