Theoretical Determination of Size Effects in Zeolite-Catalyzed Alcohol Dehydration

Seon Ah Kim, Lintao Bu, Brandon Knott, Mark Nimlos, David Robichaud, Larissa Kunz, Cong Liu, Rajeev Assary, Larry Curtiss

Research output: Contribution to journalArticlepeer-review

11 Scopus Citations


In the upgrading of biomass pyrolysis vapors to hydrocarbons, dehydration accomplishes a primary objective of removing oxygen, and acidic zeolites represent promising catalysts for the dehydration reaction. Here, we utilized density functional theory calculations to estimate adsorption energetics and intrinsic kinetics of alcohol dehydration over H-ZSM-5, H-BEA, and H-AEL zeolites. The ONIOM (our Own N-layered Integrated molecular Orbital and molecular Mechanics) calculations of adsorption energies were observed to be inconsistent when benchmarked against QM (Quantum Mechanical)/Hartree–Fock and periodic boundary condition calculations. However, reaction coordinate calculations of adsorbed species and transition states were consistent across all levels considered. Comparison of ethanol, isopropanol (IPA), and tert-amyl alcohol (TAA) over these three zeolites allowed for a detailed examination of how confinement impacts on reaction mechanisms and kinetics. The TAA, seen to proceed via a carbocationic mechanism, was found to have the lowest activation barrier, followed by IPA and then ethanol, both of which dehydrate via a concerted mechanism. Barriers in H-BEA were consistently found to be lower than in H-ZSM-5 and H-AEL, attributed to late transition states and either elevated strain or inaccurately estimating long-range electrostatic interactions in H-AEL, respectively. Molecular dynamics simulations revealed that the diffusivity of these three alcohols in H-ZSM-5 were significantly overestimated by Knudsen diffusion, which will complicate experimental efforts to develop a kinetic model for catalytic fast pyrolysis.

Original languageAmerican English
Article number700
Number of pages17
Issue number9
StatePublished - 2019

Bibliographical note

Publisher Copyright:
© 2019 by the authors. Licensee MDPI, Basel, Switzerland.

NREL Publication Number

  • NREL/JA-2700-74616


  • Alcohol dehydration
  • Biomass pyrolysis
  • DFT
  • Zeolite


Dive into the research topics of 'Theoretical Determination of Size Effects in Zeolite-Catalyzed Alcohol Dehydration'. Together they form a unique fingerprint.

Cite this