Abstract
Thin-film module sections are stressed under reverse bias to simulate partial shading conditions. Such stresses can cause permanent damage in the form of 'wormlike' defects due to thermal runaway. When large reverse biases with limited current are applied to the cells, dark lock-in thermography (DLIT) can detect where spatially-localized breakdown initiates before thermal runaway leads to permanent damage. Predicted breakdown defect sites have been identified in both CIGS and CdTe modules using DLIT. These defects include small pinholes, craters, or voids in the absorber layer of the film that lead to builtin areas of weakness where high current densities may cause thermal damage in a partial-shading event.
Original language | American English |
---|---|
Pages | 1897-1901 |
Number of pages | 5 |
DOIs | |
State | Published - 26 Nov 2018 |
Event | 7th IEEE World Conference on Photovoltaic Energy Conversion, WCPEC 2018 - Waikoloa Village, United States Duration: 10 Jun 2018 → 15 Jun 2018 |
Conference
Conference | 7th IEEE World Conference on Photovoltaic Energy Conversion, WCPEC 2018 |
---|---|
Country/Territory | United States |
City | Waikoloa Village |
Period | 10/06/18 → 15/06/18 |
Bibliographical note
See NREL/CP-5K00-70866 for preprintNREL Publication Number
- NREL/CP-5K00-73714
Keywords
- Accelerated aging
- breakdown voltage
- electroluminescence
- II-VI semiconductor materials
- imaging
- photoluminescence
- photovoltaic cells
- reliability
- thermal analysis