Abstract
The key hurdles to achieving wide consumer acceptance of battery electric vehicles (BEVs) are weather-dependent drive range, higher cost, and limited battery life. These translate into a strong need to reduce a significant energy drain and resulting drive range loss due to auxiliary electrical loads the predominant of which is the cabin thermal management load. Studies have shown that thermal sub-system loads can reduce the drive range by as much as 45% under ambient temperatures below -10°C. Often, cabin heating relies purely on positive temperature coefficient (PTC) resistive heating, contributing to a significant range loss. Reducing this range loss may improve consumer acceptance of BEVs. The authors present a unified thermal management system (UTEMPRA) that satisfies diverse thermal and design needs of the auxiliary loads in BEVs. Demonstrated on a 2015 Fiat 500e BEV, this system integrates a semi-hermetic refrigeration loop with a coolant network and serves three functions: (1) heating and/or cooling vehicle traction components (battery, power electronics, and motor) (2) heating and cooling of the cabin, and (3) waste energy harvesting and re-use. The modes of operation allow a heat pump and air conditioning system to function without reversing the refrigeration cycle to improve thermal efficiency. The refrigeration loop consists of an electric compressor, a thermal expansion valve, a coolant-cooled condenser, and a chiller, the latter two exchanging heat with hot and cold coolant streams that may be directed to various components of the thermal system. The coolant-based heat distribution is adaptable and saves significant amounts of refrigerant per vehicle. Also, a coolant-based system reduces refrigerant emissions by requiring fewer refrigerant pipe joints. The authors present bench-level test data and simulation analysis and describe a preliminary control scheme for this system.
Original language | American English |
---|---|
Number of pages | 7 |
DOIs | |
State | Published - 30 May 2018 |
Event | 2nd CO2 Reduction for Transportation Systems Conference, CO2 2018 - Turin, Italy Duration: 6 Jun 2018 → 8 Jun 2018 |
Conference
Conference | 2nd CO2 Reduction for Transportation Systems Conference, CO2 2018 |
---|---|
Country/Territory | Italy |
City | Turin |
Period | 6/06/18 → 8/06/18 |
Bibliographical note
Publisher Copyright:© 2018 National Renewable Energy Laboratory.
NREL Publication Number
- NREL/CP-5400-71288
Other Report Number
- SAE Paper No. 2018-37-0026
Keywords
- battery electric vehicles
- BEVs
- total thermal management