Abstract
In this work, a new controls-oriented wake model is modified and compared to an analytical Gaussian wake model, high-fidelity simulation data, and experimental wind tunnel campaign. This model, called the curled wake model, captures a wake phenomenon that occurs behind yawed turbines, modeled as a collection of vortices shed from the rotor plane. Through turbine simulations, these vortices are shown to have a significant impact on the prediction of the wake steering's performance. Overall, the results support the concept of secondary steering, or a yawed turbine's ability to deflect the wake of a downstream turbine, and suggest that future turbine wake studies and yaw optimizations should include the curled wake phenomenon.
Original language | American English |
---|---|
Article number | Article No. 022033 |
Number of pages | 11 |
Journal | Journal of Physics: Conference Series |
Volume | 1618 |
Issue number | 2 |
DOIs | |
State | Published - 22 Sep 2020 |
Event | Science of Making Torque from Wind 2020, TORQUE 2020 - Virtual, Online, Netherlands Duration: 28 Sep 2020 → 2 Oct 2020 |
Bibliographical note
Publisher Copyright:© 2020 Published under licence by IOP Publishing Ltd.
NREL Publication Number
- NREL/JA-5000-77138
Keywords
- FLORIS
- flow control
- offshore wind energy
- wind energy
- wind farm control