Abstract
Conventional power electronic modules employ a direct bonded copper (DBC) substrate and multiple interface layers to dissipate heat. However, reliability issues arise due to the coefficient of thermal expansion (CTE) mismatch that exists between the metal, ceramic, and semiconductor materials in the conventional module. Significant performance enhancement can be achieved by eliminating the DBC and developing an integrated substrate/cold plate with a low CTE mismatch throughout the package. To address this need, we have demonstrated the ability to directly bond the aluminum nitride (AlN) substrate to an AlSiC heat sink through transient liquid phase bonding using a Cu–Al binary system. Fabricated samples are found to have good interfacial adhesion. The novel bond material exhibits properties analogous to AlSiC and is analyzed for thermal, mechanical, and metallographic properties. The novel structure demonstrated in this work will enable smaller, lighter, and more reliable power modules, when compared to traditional configurations.
Original language | American English |
---|---|
Article number | 1800039 |
Number of pages | 9 |
Journal | Advanced Engineering Materials |
Volume | 20 |
Issue number | 10 |
DOIs | |
State | Published - 2018 |
Bibliographical note
Publisher Copyright:© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
NREL Publication Number
- NREL/JA-5400-71786
Keywords
- characterization
- power electronics
- thermal management
- transient liquid phase bonding