Abstract
Multijunction solar cell design is guided by both the theoretical optimal bandgap combination as well as the realistic limitations to materials with these bandgaps. For instance, triple-junction III-V multijunction solar cells commonly use GaAs as a middle cell because of its near-perfect material quality, despite its bandgap being higher than optimal for the global spectrum. Here, we modify the middle cell bandgap using thick GaInAs/GaAsP strain-balanced quantum well (QW) solar cells with excellent voltage and absorption. These high-performance QWs are incorporated into a triple-junction inverted metamorphic multijunction device consisting of a GaInP top cell, GaInAs/GaAsP QW middle cell, and lattice-mismatched GaInAs bottom cell, each of which has been highly optimized. We demonstrate triple-junction efficiencies of 39.5% and 34.2% under the AM1.5 global and AM0 space spectra, respectively, and the global efficiency is higher than previous record six-junction devices.
Original language | American English |
---|---|
Pages (from-to) | 1121-1135 |
Number of pages | 15 |
Journal | Joule |
Volume | 6 |
Issue number | 5 |
DOIs | |
State | Published - 2022 |
Bibliographical note
Publisher Copyright:© 2022 Elsevier Inc.
NREL Publication Number
- NREL/JA-5900-82243
Keywords
- high efficiency
- metamorphic
- multijunction solar cell
- quantum well
- space photovoltaics
- superlattice