Abstract
Lateral inhomogeneities of modern solar cells demand direct electrical imaging with nanometer resolution. We show that atomic force microscopy (AFM)-based electrical techniques provide unique junction characterizations, giving a two-dimensional determination of junction locations. Two AFM-based techniques, scanning capacitance microscopy/spectroscopy (SCM/SCS) and scanning Kelvin probe forcemicroscopy (SKPFM), were significantly improved and applied to the junction characterizations of multicrystalline silicon (mc-Si) cells. The SCS spectra were taken pixel by pixel by precisely controlling the tip positions in the junction area. The spectra reveal distinctive features that depend closely on the position relative to the electrical junction, which allows us to indentify theelectrical junction location. In addition, SKPFM directly probes the built-in potential over the junction area modified by the surface band bending, which allows us to deduce the metallurgical junction location by identifying a peak of the electric field. Our results demonstrate resolutions of 10-40 nm, depending on the techniques (SCS or SKPFM). These direct electrical measurements withnanometer resolution and intrinsic two-dimensional capability are well suited for investigating the junction distribution of solar cells with lateral inhomogeneities.
Original language | American English |
---|---|
Number of pages | 8 |
State | Published - 2011 |
Event | 37th IEEE Photovoltaic Specialists Conference (PVSC 37) - Seattle, Washington Duration: 19 Jun 2011 → 24 Jun 2011 |
Conference
Conference | 37th IEEE Photovoltaic Specialists Conference (PVSC 37) |
---|---|
City | Seattle, Washington |
Period | 19/06/11 → 24/06/11 |
NREL Publication Number
- NREL/CP-5200-50721
Keywords
- atomic force microscopy (AFM)
- multicrystalline silicon
- PV
- solar cells