Ultrashort Pulsed Laser Induced Material Lift-Off Processing of CZTSe Thin-Film Solar Cells

Paulius Gecys, Edgaras Markauskas, Mindaugas Gedvilas, Gediminas Raciukaitis, Ingrid Repins, Carolyn Beall

Research output: Contribution to journalArticlepeer-review

33 Scopus Citations


The thin-film Cu-chalcopyrite-based solar cell technologies are becoming more attractive due to their lower cost and optimal performance. High efficiency of small cells might be maintained with the transition to larger areas if small segments are interconnected in series in order to reduce photocurrent in thin films and resistance losses. Interconnect formation is based on three step scribing processes and use of laser is thus crucial for performance of the device.For the first time we demonstrate the possibility to scribe the CZTSe thin-film solar cell structures with picosecond lasers. Investigations on the material lift-off effect in the CZTSe thin film were performed and the method was approved for the damage-free front-side scribing processes. Single pulse ablation and scribing experiments in the thin-film solar cell structures together with theoretical modeling of laser energy coupling in the complex CZTSe structure are presented. We found that the absorber layer removal process was triggered by a micro-explosive effect induced by high pressure of sublimated material due to temperature increase in molybdenum-CZTSe interface. This facilitated to minimize the remaining thermal effects since the laser-affected material was removed by thermo-mechanical process.

Original languageAmerican English
Pages (from-to)82-90
Number of pages9
JournalSolar Energy
StatePublished - Apr 2014

NREL Publication Number

  • NREL/JA-5200-61463


  • CZTSe
  • Kesterite
  • Lift-off
  • Picosecond laser
  • Spallation
  • Thin-film


Dive into the research topics of 'Ultrashort Pulsed Laser Induced Material Lift-Off Processing of CZTSe Thin-Film Solar Cells'. Together they form a unique fingerprint.

Cite this