Abstract
We discuss results of our investigations toward understanding bulk and surface components of light-induced degradation (LID) in low-Fe c-Si solar cells. The bulk effects, arising from boron-oxygen defects, are determined by comparing degradation of cell parameters and their thermal recovery, with that of the minority-carrier lifetime (..tau..) in sister wafers. We found that the recovery of..tau.. in wafers takes a much longer annealing time compared to that of the cell. We also show that cells having SiN:H coating experience a surface degradation (ascribed to surface recombination). The surface LID is seen as an increase in the q/2kT component of the dark saturation current (J02). The surface LID does not recover fully upon annealing and is attributed to degradation of the SiN:H-Siinterface. This behavior is also exhibited by mc-Si cells that have very low oxygen content and do not show any bulk degradation.
Original language | American English |
---|---|
Number of pages | 8 |
State | Published - 2012 |
Event | 2012 IEEE Photovoltaic Specialists Conference - Austin, Texas Duration: 3 Jun 2012 → 8 Jun 2012 |
Conference
Conference | 2012 IEEE Photovoltaic Specialists Conference |
---|---|
City | Austin, Texas |
Period | 3/06/12 → 8/06/12 |
NREL Publication Number
- NREL/CP-5200-54200
Keywords
- annealing
- bulk
- crystalline silicon (x-Si) (c-Si)
- light-induced degradation
- minority-carrier lifetimes
- solar cells
- surface