Understanding Sulfur Poisoning and Regeneration of Nickel Biomass Conditioning Catalysts using X-Ray Absorption Spectroscopy: Abstract No. CATL-130

Research output: Contribution to conferencePaper

Abstract

The production of biofuels can proceed via a biomass gasification to produce syngas, which can then undergo catalytic conditioning and reforming reactions prior to being sent to a fuel synthesis reactor. Catalysts used for biomass conditioning are plagued by short lifetimes which are a result of, among other things, poisoning. Syngas produced from biomass gasification may contain between 30-300ppm H2S, depending on the feedstock and gasification conditions, and H2S is a key catalyst poison. In order to overcome catalyst poisoning, either an H2S-tolerant catalyst or an efficient regeneration protocol should be employed. In this study, sulfur K-edge X-ray absorption near edge spectroscopy (XANES) was used to monitor sulfur species on spent catalyst samples and the transformation ofthese species from sulfides to sulfates during steam and air regeneration on a Ni/Mg/K/Al2O3 catalyst used to condition biomass-derived syngas. Additionally, nickel K-edge EXAFS and XANES are used to examine the state of nickel species on the catalysts. Post-reaction samples showed the presence of sulfides on the H2S-poisoned nickel catalyst and although some gaseous sulfur species were observedto leave the catalyst bed during regeneration, sulfur remained on the catalyst and a transformation from sulfides to sulfates was observed. The subsequent H2 reduction led to a partial reduction of sulfates back to sulfides. A proposed reaction sequence is presented and recommended regeneration strategies are discussed.
Original languageAmerican English
StatePublished - 2013
EventAmerican Chemical Society. 245th ACS National Meeting - New Orleans, Louisiana
Duration: 7 Apr 201311 Apr 2013

Conference

ConferenceAmerican Chemical Society. 245th ACS National Meeting
CityNew Orleans, Louisiana
Period7/04/1311/04/13

NREL Publication Number

  • NREL/CP-5100-58864

Fingerprint

Dive into the research topics of 'Understanding Sulfur Poisoning and Regeneration of Nickel Biomass Conditioning Catalysts using X-Ray Absorption Spectroscopy: Abstract No. CATL-130'. Together they form a unique fingerprint.

Cite this