TY - JOUR
T1 - Using Design Principles to Systematically Plan the Synthesis of Hole-Conducting Transparent Oxides: Cu3VO4 and Ag3VO4 as a Case Study
AU - Trimarchi, Giancarlo
AU - Peng, Haowei
AU - Im, Jino
AU - Freeman, Arthur J.
AU - Cloet, Veerle
AU - Raw, Adam
AU - Poeppelmeier, Kenneth R.
AU - Biswas, Koushik
AU - Lany, Stephan
AU - Zunger, Alex
PY - 2011/10/14
Y1 - 2011/10/14
N2 - In order to address the growing need for p-type transparent conducting oxides (TCOs), we present a materials design approach that allows to search for materials with desired properties. We put forward a set of design principles (DPs) that a material must meet in order to qualify as a p-type TCO. We then start from two prototype p-type binary oxides, i.e., Cu2O and Ag 2O, and define a large group of compounds in which to search for unique candidate materials. From this set of compounds, we extracted two oxovanadates, Cu3VO4 and Ag3VO4, which serve as a case study to show the application of the proposed materials selection procedure driven by the DPs. Polycrystalline Ag3VO 4 was synthesized by a water-based hydrothermal technique, whereas Cu3VO4 was prepared by a solid-state reaction. The theoretical study of the thermochemistry, based on first-principles electronic structure methods, demonstrates that Cu3VO4 and α-Ag3VO4 are p-type materials that show intrinsic hole-producing defects along with a low concentration of "hole- killing" defects. Owing to its near-perfect stoichiometry, Ag 3VO4 has a rather low hole concentration, which coincides with the experimentally determined conductivity limit of 0.002 S/cm. In contrast, Cu3VO4 is highly off stoichiometric, Cu 3-xVO4 (x=0.15), which raises the amount of holes, but due to its black color, it does not fulfill the requirements for a p-type TCO. The onset of optical absorption in α-Ag3VO4 is calculated to be 2.6 eV, compared to the experimentally determined value of 2.1 eV, which brings it to the verge of transparency.
AB - In order to address the growing need for p-type transparent conducting oxides (TCOs), we present a materials design approach that allows to search for materials with desired properties. We put forward a set of design principles (DPs) that a material must meet in order to qualify as a p-type TCO. We then start from two prototype p-type binary oxides, i.e., Cu2O and Ag 2O, and define a large group of compounds in which to search for unique candidate materials. From this set of compounds, we extracted two oxovanadates, Cu3VO4 and Ag3VO4, which serve as a case study to show the application of the proposed materials selection procedure driven by the DPs. Polycrystalline Ag3VO 4 was synthesized by a water-based hydrothermal technique, whereas Cu3VO4 was prepared by a solid-state reaction. The theoretical study of the thermochemistry, based on first-principles electronic structure methods, demonstrates that Cu3VO4 and α-Ag3VO4 are p-type materials that show intrinsic hole-producing defects along with a low concentration of "hole- killing" defects. Owing to its near-perfect stoichiometry, Ag 3VO4 has a rather low hole concentration, which coincides with the experimentally determined conductivity limit of 0.002 S/cm. In contrast, Cu3VO4 is highly off stoichiometric, Cu 3-xVO4 (x=0.15), which raises the amount of holes, but due to its black color, it does not fulfill the requirements for a p-type TCO. The onset of optical absorption in α-Ag3VO4 is calculated to be 2.6 eV, compared to the experimentally determined value of 2.1 eV, which brings it to the verge of transparency.
KW - Ag2O
KW - Cu2O
KW - p-type TCO
KW - transparent conducting oxides (TCO)
UR - http://www.scopus.com/inward/record.url?scp=80455129187&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.84.165116
DO - 10.1103/PhysRevB.84.165116
M3 - Article
AN - SCOPUS:80455129187
SN - 1098-0121
VL - 84
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 16
M1 - 165116
ER -