Abstract
One of the key challenges for the electric vehicle industry is to develop high-power-density electric motors. Achieving higher power density requires efficient heat removal from inside the motor. In order to improve thermal management, a multiphysics modeling framework that is able to accurately predict the behavior of the motor, while being computationally efficient, is essential. This paper first presents a detailed validation of a lumped parameter thermal network (LPTN) model of an Internal Permanent Magnet synchronous motor within the commercially available motor-cad modeling environment. The validation is based on temperature comparison with experimental data and with more detailed finite element analysis (FEA). All critical input parameters of the LPTN are considered in detail for each layer of the stator, especially the contact resistances between the impregnation, liner, laminations, and housing. Finally, a sensitivity analysis for each of the critical input parameters is provided. A maximum difference of 4% - for the highest temperature in the slot-winding and the end-winding - was found between the LPTN and the experimental data. Comparing the results from the LPTN and the FEA model, the maximum difference was 2% for the highest temperature in the slot-winding and end-winding. As for the LPTN sensitivity analysis, the thermal parameter with the highest sensitivity was found to be the liner-to-lamination contact resistance.
Original language | American English |
---|---|
Number of pages | 9 |
Journal | Journal of Electronic Packaging, Transactions of the ASME |
Volume | 144 |
Issue number | 2 |
DOIs | |
State | Published - 2022 |
NREL Publication Number
- NREL/JA-5400-78672
Keywords
- contact resistances
- electric motor
- FEA
- lumped parameter network
- motor cooling
- sensitivity analysis
- thermal management