Abstract
In this study, simulation results of two different computational fluid dynamics codes, Nalu-Wind and EllipSys3D, are presented for a wind turbine rotor in complex yawed and sheared inflow. The results are compared to measurements from the DanAero experiments, to validate computed pressures and azimuthal trends. Despite different code methodologies and grid setups, the codes agree well in computed pressures and integrated forces along the blade for all blade azimuthal positions, however with some discrepancy in the very yawed case. Additionally, both codes capture well the azimuthal trends and force levels seen in measurements. Investigation into discrepancies shows that expanding grids before the rotor, lead to smearing of the wind profiles, which is likely the main cause of the differences in the results between the codes. Additionally, omission of the ground constraint cause discrepancies in relative velocity seen by the passing blade, due to an over speeding beneath the rotor.
Original language | American English |
---|---|
Article number | Article No. 052049 |
Number of pages | 10 |
Journal | Journal of Physics: Conference Series |
Volume | 1618 |
Issue number | 5 |
DOIs | |
State | Published - 22 Sep 2020 |
Event | Science of Making Torque from Wind 2020, TORQUE 2020 - Virtual, Online, Netherlands Duration: 28 Sep 2020 → 2 Oct 2020 |
Bibliographical note
Publisher Copyright:© 2020 Published under licence by IOP Publishing Ltd.
NREL Publication Number
- NREL/JA-5000-77985
Keywords
- blade resolved
- CFD
- Nalu-wind
- RANS
- validation
- wind turbines