Abstract
FAST.Farm is a new midfidelity, multiphysics engineering tool for modeling the power performance and structural loads of wind turbines within a wind farm, including wake and array effects. Previous calibration of the tuneable model parameters of FAST.Farm has shown that its prediction of wake dynamics for a single wind turbine across different atmospheric stability conditions and nacelle-yaw errors matches well with high-fidelity large-eddy simulation at a small fraction of the computational expense. This paper presents a validation of FAST.Farm against large-eddy simulation for a series of cases - independent from those used to support the calibration - considering single-turbine and small wind-farm scenarios, which are both subject to variations in inflow and control. The validation has demonstrated that FAST.Farm reasonably accurately predicts: (1) thrust and power for individual turbines both in isolation and down the row of the small wind farm, (2) wake meandering behavior across different atmospheric conditions, and (3) averaged wake-deficit advection, evolution, and merging effects. The validation also highlights potential physics that could be improved in FAST.Farm in the future.
Original language | American English |
---|---|
Article number | Article No. 062005 |
Number of pages | 13 |
Journal | Journal of Physics: Conference Series |
Volume | 1037 |
Issue number | 6 |
DOIs | |
State | Published - 19 Jun 2018 |
Event | 7th Science of Making Torque from Wind, TORQUE 2018 - Milan, Italy Duration: 20 Jun 2018 → 22 Jun 2018 |
Bibliographical note
Publisher Copyright:© Published under licence by IOP Publishing Ltd.
NREL Publication Number
- NREL/JA-5000-71376
Keywords
- FAST.Farm SOWFA
- power
- structural loads
- validation
- wake and array effects
- wind farm