Abstract
Long-term weather and climate observatories can be affected by the changing environments in their vicinity, such as the growth of urban areas or changing vegetation. Wind plants can also impact local atmospheric conditions through their wakes, characterized by reduced wind speed and increased turbulence. We explore the extent to which the wind plants near an atmospheric measurement site in the central United States have affected their long-term measurements. Both direct observations and mesoscale numerical weather prediction simulations demonstrate how the wind plants induce a wind deficit aloft, especially in stable conditions, and a wind speed acceleration near the surface, which extend ∼ 30 km downwind of the wind plant. Turbulence kinetic energy is significantly enhanced within the wind plant wake in stable conditions, with near-surface observations seeing an increase of more than 30% a few kilometers downwind of the plants.
Original language | American English |
---|---|
Article number | Article No. 22939 |
Number of pages | 12 |
Journal | Scientific Reports |
Volume | 11 |
Issue number | 1 |
DOIs | |
State | Published - Dec 2021 |
Bibliographical note
Publisher Copyright:© 2021, The Author(s).
NREL Publication Number
- NREL/JA-5000-80157
Keywords
- AWAKEN
- SGP
- turbulence
- wakes