Abstract
Water-based processing steps are ubiquitous in the semiconductor industry, and the field of photovoltaics (PV) is no exception. During chemical bath deposition (CBD) of CdS, complex chemical reactions occurring at surfaces and in solution are poorly understood, yet have been shown to have powerful effects on the performance in terms of reliability and efficiency of finished PV devices. In thepast, electron spectroscopic studies of these reactions have been hampered by the conflicting requirements of ultra-high vacuum and exposure of samples to liquid water. In this paper we present initial results from a new tool at NREL that allows one to conduct atmospheric pressure, liquid phase chemical processes on thin film PV materials and subsequent examination via core and valence levelelectron spectroscopies without exposing samples to air contamination.
Original language | American English |
---|---|
Number of pages | 5 |
State | Published - 2005 |
Event | 2004 DOE Solar Energy Technologies Program Review Meeting - Denver, Colorado Duration: 25 Oct 2004 → 28 Oct 2004 |
Conference
Conference | 2004 DOE Solar Energy Technologies Program Review Meeting |
---|---|
City | Denver, Colorado |
Period | 25/10/04 → 28/10/04 |
Bibliographical note
Presented at the 2004 DOE Solar Energy Technologies Program Review Meeting, 25-28 October 2004, Denver, Colorado. Also included in the proceedings available on CD-ROM (DOE/GO-102005-2067; NREL/CD-520-37140)NREL Publication Number
- NREL/CP-520-37034
Keywords
- chemical bath deposition (CBD)
- devices
- electron spectroscopic
- photoelectron spectroscopic (UPS)
- PV
- solar cells
- thin films
- ultra-high vacuum
- x-ray photoelectron spectroscopy (XPS)